Function of Airfoil - اسأل الطيار ask pilot

## عاجل

موقع يضم كل ما يتعلق بالطيران المدني. A site that includes everything related to civil aviation

## An airfoil is a surface designed to obtain lift from the air through which it moves. Thus, it can be stated that any part of the aircraft that converts air resistance into lift is an airfoil. The profile of a conventional wing is an excellent example of an airfoil.

The difference in curvature of the upper and lower surfaces of the wing builds up the lift force. Air flowing over the top surface of the wing must reach the trailing edge of the wing in the same amount of time as the air flowing under the wing. To do this, the air passing over the top surface moves at a greater velocity than the air passing below the wing because of the greater distance it must travel along the top surface. This increased velocity, according to Bernoulli’s Principle, means a corresponding decrease in pressure on the surface. Thus, a pressure differential is created between the upper and lower surfaces of the wing, forcing the wing upward in the direction of the lower pressure.

Within limits, lift can be increased by increasing the angle of attack (AOA), wing area, velocity, density of the air, or by changing the shape of the airfoil. When the force of lift on an aircraft’s wing equals the force of gravity, the aircraft maintains level flight.

**Shape of the Airfoil
Individual airfoil section properties differ from those properties of the wing or aircraft as a whole because of the effect of the wing planform. A wing may have various airfoil sections from root to tip, with taper, twist, and sweepback. The resulting aerodynamic properties of the wing are determined by the action of each section along the span.

The shape of the airfoil determines the amount of turbulence or skin friction that it produces, consequently affecting the efficiency of the wing. Turbulence and skin friction are controlled mainly by the fineness ratio, which is defined as the ratio of the chord of the airfoil to the maximum thickness. If the wing has a high fineness ratio, it is a very thin wing. A thick wing has a low fineness ratio. A wing with a high fineness ratio produces a large amount of skin friction. A wing with a low fineness ratio produces a large amount of turbulence. The best wing is a compromise between these two extremes to hold both turbulence and skin friction to a minimum.
The efficiency of a wing is measured in terms of the lift to drag ratio (L/D). This ratio varies with the AOA but reaches a definite maximum value for a particular AOA. At this angle, the wing has reached its maximum efficiency. The shape of the airfoil is the factor that determines the AOA at which the wing is most efficient; it also determines the degree of efficiency. Research has shown that the most efficient airfoils for general use have the maximum thickness occurring about one-third of the way back from the leading edge of the wing.

High-lift wings and high-lift devices for wings have been developed by shaping the airfoils to produce the desired effect. The amount of lift produced by an airfoil increases with an increase in wing camber. Camber refers to the curvature of an airfoil above and below the chord line surface. Upper camber refers to the upper surface, lower camber to the lower surface, and mean camber to the mean line of the section. Camber is positive when departure from the chord line is outward and negative when it is inward. Thus, high-lift wings have a large positive camber on the upper surface and a slightly negative camber on the lower surface. Wing flaps cause an ordinary wing to approximate this same condition by increasing the upper camber and by creating a negative lower camber.

It is also known that the larger the wingspan, as compared to the chord, the greater the lift obtained. This comparison is called aspect ratio. The higher the aspect ratio, the greater the lift. In spite of the benefits from an increase in aspect ratio, it was found that definite limitations were defined by structural and drag considerations.

On the other hand, an airfoil that is perfectly streamlined and offers little wind resistance sometimes does not have enough lifting
power to take the aircraft off the ground. Thus, modern aircraft have airfoils which strike a medium between extremes, the shape depending on the purposes of the aircraft for which it is designed.

**Angle of Incidence
The acute angle the wing chord makes with the longitudinal axis of the aircraft is called the angle of incidence, or the angle of wing setting. The angle of incidence in most cases is a fixed, built-in angle. When the leading edge of the wing is higher than the trailing edge, the angle of incidence is said to be positive. The angle of incidence is negative when the leading edge is lower than the trailing edge of the wing.

**Angle of Attack (AOA)
Before beginning the discussion on AOA and its effect on airfoils, first consider the terms chord and center of pressure (CP).
The chord of an airfoil or wing section is an imaginary straight line that passes through the section from the leading edge to the trailing edge. The chord line provides one side of an angle that ultimately forms the AOA. The other side of the angle is formed by a line indicating the direction of the relative airstream. Thus, AOA is defined as the angle between the chord line of the wing and the direction of the relative wind. This is not to be confused with the angle of incidence, which is the angle between the chord line of the wing and the longitudinal axis of the aircraft.

On each part of an airfoil or wing surface, a small force is present. This force is of a different magnitude and direction from any forces acting on other areas forward or rearward from this point. It is possible to add all of these small forces mathematically. That sum is called the “resultant force” (lift). This resultant force has magnitude, direction, and location, and can be represented as a vector. The point of intersection of the resultant force line with the chord line of the airfoil is called the center of pressure (CP). The CP moves along the airfoil chord as the AOA changes. Throughout most of the flight range, the CP moves forward with increasing AOA and rearward as the AOA decreases. The effect of increasing AOA on the CP.

The AOA changes as the aircraft’s attitude changes. Since the AOA has a great deal to do with determining lift, it is given primary consideration when designing airfoils. In a properly designed airfoil, the lift increases as the AOA is increased.

When the AOA is increased gradually toward a positive AOA, the lift component increases rapidly up to a certain point and then suddenly begins to drop off. During this action the drag component increases slowly at first, then rapidly as lift begins to drop off.

When the AOA increases to the angle of maximum lift, the burble point is reached. This is known as the critical angle. When the critical angle is reached, the air ceases to flow smoothly over the top surface of the airfoil and begins to burble or eddy. This means that air breaks away from the upper camber line of the wing. What was formerly the area of decreased pressure is now filled by this burbling air. When this occurs, the amount of lift drops and drag becomes excessive. The force of gravity exerts itself, and the nose of the aircraft drops. This is a stall. Thus, the burble point is the stalling angle.